Digital Logic Circuits

Verilog for Combinational Circuits

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic
Spring 2025

)|

D6 {

SYSTEMS

FUNDAMENTALEFO



https://mirjanastojilovic.github.io/cs173/index.html

|
o v { \ /
Ses i B . y - . N \
- | 3 ) ~ = . \
I\ C S a |
y / ]
{ 1 . / . " ’
| Ny 4 W e o s d ) -
I 3 R [\ : 1
| X > WS
i B ol . . ¢
. | > @ L3 -
\ | . . \ di—s 4 NV o\ e \ g
J J N\ ! \
1 § o, \AY \ . \ \ \ .
e =3 b= ¢ ( \ |
4 A RN e N\ . o/ -
o 0 | 1Y ™ e 7 \ )
. \ 7 /\ 4 Ll o y Al ) =S
G = ) e ~) i = o i J \ . / i
: % \ B
1 i \ ~ )
. \ \ A . o s . ) .
\ \ \ / L - 7 -
\ SR o\ =S = ] — & ——o0oo
\ VAT e B T BTN . Y4 .
. X ‘Nt r / /
& . N\ S /
\ . ¢ -~ W\ . A
e P~ 3 8N ~ SE\ 7,
\ . o SN 2
\ 4 v <

Previously on FDS

Intro to CAD and Verilog

CS-173, © EPFL, Spring 2025



Previously

= Discovered the key phases of
computer-aided design (CAD) flow
« Hardware description language (HDL)

= _earned how to use Verilog HDL for
gate-level modeling of logic circuits

= \/erilog gates, wires, modules,
ports, and subcircuits

= Gate-level modeling examples:
 Full-adder
 Four-bit ripple-carry adder



Let's Talk About...

..Behavioral modeling in Verilog and

some new gates and combinational circuits

CS-173, © EPFL, Spring 2025



Learning Outcomes A

= Discover tri-state drivers ™
= |_earn about high-impedance Z
= Model shared interconnect (a bus) using MUXes or tri-state drivers

= Use Verilog behavioral modeling to describe logic circuits

» Understand the difference between continuous assignments and
procedural statements

» Use always blocks and if-else and switch statements




Quick Outline

= Tri-state drivers » Behavioral Modeling in Verilog

= BUS  Continuous assignments
assign keyword
Procedural statements

o With multiplexers
« With tri-state drivers

: always block
= Verilog HDL Y |

. req type for variables

e L Oqgic gates o
if-else statement
e VValues: scalar and vector |
D —. « Example: 2-to-1 multiplexer

e Constants, Concatenation

case statement
* Parameters, Nets « Example: full-adder

CS-173, © EPFL, Spring 2025



IVvers

Tri-State Dr

CS-173, © EPFL, Spring 2025



Multiple Gates Driving Same Inputs

= Example: Two logic gates wanting E)D@ _}

to drive an input of a third logic gate

= [ssue: The logic gates outputs should not be directly connected

* If one gate forces 1" while the other forces ‘0’, a low resistance path
between the power supply and the ground would be created, and the
resulting current would be high. We call that situation a short-circuit

= Solution: Insert MUXes or tri-state drivers on the conflicting
signal paths



Tri-State Drivers

= A tri-state driver has a data input, an output, and an enable input

- O = O &
= O N N|=

e=1
~D o o f

R—0

*In electrical engineering, R stands for resistance; resistance is the real part of the impedance.



Tri-State Drivers

S

—n
- O = OfE
= O N N |

R — o0

= \When the enable input is inactive, the output is electrically
disconnected from the data input; disconnected state is referred
to as high-impedance state and usually denoted as Z (or z)
» Three states of a tri-state driver are logical 0, logical 1, and Z

* In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.

» https.//en.wikipedia.org/wiki/Electrical_impedance



https://en.wikipedia.org/wiki/Electrical_impedance

Types of Tri-State Drivers

= Enable active high » Enable active low

wﬁ}J‘ w%f wﬂ}f w{&w

= O N N |
= O N N |
N N = O«
N N © = |

e
0
0
1
1

e
0
0
1
1

O_\_\OS

—_ =2 O O ®

- = O O ®

w
0
1
0
1




(7]
i
—
o
=
<
x
1]

Example: Tri-State Drivers EPa———

= TWO gate outputs driving a wire 3:

e=1
w _
! ! >
e
W2 w1—> O o f — W
TO avoid short Circuits, only e =20

onhe driver at g time is ehabled

w2~{ >——0 O——
CS-17/3, © EPFL, Spring 2025

12



BLIS
o With MUXes
With tri-state drivers e

. . . . . . . . o e

...........

---------

e o "'V.w".J’?"

~—3

D OO O==aD =

CS-173, © EPFL, Spring 2025




Bus

= Digital systems are commonly composed of
several modules exchanging data by means
of a common set of interconnects (wires)

= The set of wires grouped under a common
name is referred to as a bus

CS-173, © EPFL, Spring 2025

n-bit BUS
(common interconnects)

n

Module T /
n

Module 2 *

Module
K+1

Module Z

Module K

n Wires (h-bit vector)
14



Bus

= Bus receives data from several modules
(one at a time) and brings that data to
the inputs of other modules

» Buses are typically n-bit wide, where n > 1

= Example: An n-bit bus DATA groups n wires,
each carrying one signal
« DATA[Q), .., DATA[n-1]

= |[n Verilog, n-bit and 1-bit signals are called
vectors and scalars, respectively

CS-173, © EPFL, Spring 2025

n-bit BUS
(common interconnects)

n

Module T /
n

Module 2 *

Module
K+1

Module Z

Module K

n Wires (h-bit vector)
15



Implementing a Bus With MUXes

\ = The multiplexer takes K (K > 2)
0

n
Module 1 memplemsp n-bit data inputs and
an [logy(K)1-bit select signal s

Module
n K+1 to select which of the inputs to
Module 2 + 1 'J : pass to the output
: : : I = An additional circuit that
Module Z controls the activation of

n the select signals is typically
Module K +K-1 Sresent

[log, (K]

-

CS-173, © EPFL, Spring 2025



Implementing a Bus With Tri-State Drivers

€1
n n
Module T
e Module
K+1
n n
Module 2 #{%ﬁ%
Module Z
EK
n n

Module K

h tri-State drivers, all controlled

CS-173, © EPFL, Spring 2025 by the same enable sighal ey

= Only one of the enable
signals is active at a time
so that short circuits
are avoided

= An additional circuit that
controls the activation of
the enable signals is
typically present

17



CS-173, © EPFL, Spring 2025

18



Verilog, Contd.

 Signal values, numbers, and parameters

CS-173, © EPFL, Spring 2025




o
o
=
74
L
>

Verilog Built-In Gates

Complete List

= Complete list of built-in gates
 bufif is a tri-state buffer
» notif is a tri-state inverter

and xor  bufif0
nand xnor bufif1
or buf notif0
nor not notif1

CS-173, © EPFL, Spring 2025

= Tri-state driver usage
 bufifo(f, w, e)
 bufifl(f, w, e)

s oo

 notifo(f, w, e)

€ e
S TaRE

20



o
o
=
4
L
>

Scalar Signal Values

In Verilog

= Verilog supports one-bit signals (scalars)
= Each individual signal can have one of the four values:

Value  Meaning

0 logic value O

1 logic value 1

Z or Z, tri-state (high-impedance)

X or X, unknown value or don't care

CS-173, © EPFL, Spring 2025

27



Vector Signal Values

In Verilog

= Verilog supports multi-bit signals (vectors)

= The value of a vector variable is specified by giving a constant
of the form

VERILOG

[size]['radix]constant
where size is the number of bits in the constant

Radix  Meaning

d decimal
(default if no radix is specified)
b binary
h hexadecimal
(o octal

CS-173, © EPFL, Spring 2025




Constants

In Verilog
= Recall: [size]['radix]constant = Examples of constants
= |f size specifies more bits than Constant Meaning
, are needed to represent the given 0 number 0
S constant, then in most cases, 10 decimal number 10
= the constant is padded with zeros -8'd10 -10 as an 8-bit two's complement
« The exceptions to this rule are when 'b10  binary number (10), = (2)14
the first character of the constant is ‘'h10 hex number (10),, = (16)4,
either x or z, in which case the 4'b100 binary number (0100), = (4),4

padding is done using that value A'bx unknown 4-bit value xxxx

8'b1000_0011

8'hfx hex number (fx),,
equivalent to 8'b11717T_xxxx

can be inserted for readability

CS-173, © EPFL, Spring 2025 23




o
o
=
4
L
>

Concatenation Operator

In Verilog

= \Verilog concatenation operator {, } allows vectors to be
combined to produce a wider resulting vector

= Example:
wire [3:0] upper = 4'b1100;
wire [3:0] lower = 4'b0011;

wire [7:0] combined;

assign combined = {upper, lower}; // Result: 8'bl11000011

CS-173, © EPFL, Spring 2025

24



o
o
=
74
L
>

Parameters

In Verilog

» Parameters associate an identifier name with a constant

= Examples:

* parameter n = 4;
The identifier n can be used in place of the number 4

 parameter SO = 2°b00, S1 = 2°bO1l, S2 = 2°blO, S3 = 2°bll;
The name S@ can be substituted for the binary vector (00),, etc.

= \We will use them when working with parameterized subcircuits

CS-173, © EPFL, Spring 2025

25



Nets

In Verilog

= Nets represent connections between circuit components
» Do not store values, but transmit signals

= Most common net types are wire and tri

VERILOG

= The wire type is used to connect an output

of one logic element in a circuit to Note: [MSB:LSB] specify
; : the vector range

an input of another logic element D e
. : . . the leftmost bit (highest index);
Exam P les: WZ!. re X, LSB (least-significant bit):
wire [3:0] s; the rightmost bit (lowest index)

CS-173, © EPFL, Spring 2025 26




Nets

In Verilog

= Nets represent connections between circuit components
» Do not store values, but transmit signals

= Most common net types are wire and tri

= The tri type denotes tri-state connections;

tri nets are treated the same way Note: [MSB:LSB] specify
. . HH the vector range

as the wires; serve to enhance readability D e
o Examples: tri z1; the leftmost bit (highest index);

] L SB (least-significant bit):
tri [7:0] data out; the rightmost bit (lowest index)



CS-173, © EPFL, Spring 2025

28



Behavioral Modeling

In Verilog

« Continuous assignments with assign

« Procedural assignments with always@

CS-173, © EPFL, Spring 2025

DO OO —==O—=



Recall Gate-Level Modeling

= Structural (gate level) modeling

module my circuit_structural (

%il)) Diul input x1, x2, x3, x4, Inputs and outputs can be defined
% output f between the parentheses, for readability
a . ) >+ );
< 2
> T
= 4 Y 3@4 w7Df wire wl, w2, w3, wd, w5, w6, w7, w8;

1€§:j::>f?5 we and (wl, x1, x3);
not (w2, x2);
Y _)_ not (w3, x3);
&D— and (w4, x2, x4);
We or (w5, x1, w3);
or (w6, w2, x4);
or (w7, wl, w4);
and (w8, w5, w6);
or (f, w7, w8);
CS-173, © EPFL, Spring 2025 endmodule 30




Behavioral Modeling

With Continuous Assignments

= Gate-level modeling becomes tedious for large circuits

= Alternative: use more abstract expressions and programming
constructs to describe the behavior of a logic circuit

%513 } module my circuit behavioral (
:D— ;:z:ztxi’ X2, X3, x4, Verilog operators:
L2 } )s & - bitwise AND
L4 wr ) [ - bitwise OR
Y Df vire w7 . w8: ~ - bitwise NOT
;D Wy > Bitwise: applied on
} assign w7 = (x1 & x3) | (x2 & x4); every bit in isolation

assign w8 = (x1 | ~x3) & (~x2 | x4);
ED* assign £ = w7 | ws8;
endmodule

CS-173, © EPFL, Spring 2025 31



Continuous Assignments

Assign keyword

= The assign keyword provides a continuous assignment for a signal

= The term continuous stems from the use of Verilog in
the simulation of logic circuits

« Whenever any signal on the right-hand side of the assignment changes its
value, the signal on the left-hand side will be re-evaluated

« Continuous assignments are executed in parallel:
therefore, the order in which they appear in the code is irrelevant

CS-173, © EPFL, Spring 2025

32



Verilog Assign Statement

» General form:
assign net_assignment {, net_assignment} ;

" Fxam D les: Note: Braces indicate

that additional entries
are permitted

e assign f = w7 | w8;
// Whenever w7 or w8 change,
// f will be re-evaluated
 wire [3:1] A, B, C;
assign C = A & B;
// Whenever vectors A or B change,
// C will be reevaluated

// C[1] = A[1] & B[1], C[2] = A[2] & B[2], C[3] = A[3] & B[3]

CS-173, © EPFL, Spring 2025 33



Behavioral Modeling

With Procedural Statements

= \Verilog allows us to use an even higher level of abstraction with
procedural statements

 Also called sequential statements
« Examples: if-else, case, loops

= Procedural statements must be contained inside an always-block
 Evaluated in the order given in the code

» To describe circuit behavior, variables are used instead of wires
 For circuit modeling, variables of type reg are used

CS-173, © EPFL, Spring 2025

34



Always Block

Behavioral Modeling with Procedural Statements

» General format always @*

(for combinational circuits) [begin]

[procedural assignments] Note: The square

if-else statements] brackets indicate an

[case statements] optional field

[while, repeat, and for loops]

[task and function calls]
lend]

= When multiple statements are included in the block, the begin
and end keywords are needed; otherwise, they can be omitted*

[*] Not recommended because it is error-prone



Always Block

Behavioral Modeling with Procedural Statements

» General format always @*

(for combinational circuits) [begin]

[procedural assignments] Note: The square

if-else statements] brackets indicate an

[case statements] optional field

[while, repeat, and for loops]

[task and function calls]
lend]

» always @* treats all input signals used in the block as relevant

* If any input signal mentioned in the block changes its value,
all statements using that signal are evaluated in the order presented.
A signal assigned multiple values inside the block retains the last one



If-Else Statement

= |f the expression is True,
the statements inside the begin-end
block are evaluated

* When multiple statements are
involved, they have to be included
inside a begin-end block

= else if and else clauses are optional

« When included, they are paired with
the most recent unfinished if or else if

= General format

if (expression1)

begin
statement;

end

else if (expression2)

begin
statement;

end

else

begin
statement;

end



2-to-1 MUX

Al Block and an If-Else Stat t Multiplexer
ways bIOCK ana an IT-cise statemen
\
w2 —1
= \Write a behavioral model of a 2-to-1T MUX wi—g /
using procedural statements in Verilog T
S

module my 2tolmux (
input wl, w2, s,
output reg f);

EXAMPLES

Note the output is of the type reg,
because this is a behavioral model
(in an always block)

always @* begin
if (s == @) begin
f = wl; Verilog relational operators op return
end 1 (True) or O (False) based on the result
of the specified comparison A op B:

else begin

f = w2; == B: equality check operator
end A I= B: inequality check
end A>B A>=B A<B,A<=B:comparisons
endmodule

CS-173, © EPFL, Spring 2025 38




Case Statement

= The bits in the expression,
called the controlling expression,
are checked for a match with
each alternative

 Each digit in each alternative is
compared for an exact match
of the four values 0, 1, x, z

A special case is the default clause,
which takes effect if no other
alternative matches

= The first successful match
causes the associated statements
to be evaluated

» The form of the case statement

case (expression)
alternativel: begin
statements;
end
alternative2: begin
statements;
end
[default: begin
statements;
end]

endcase
Note: The square

brackets indicate an
optional field




Full-Adder

Always Block and a Case Statement

module fulladd (
= case statements can be used 33¥:Etxée§’s“2;u 0;
to describe truth tables

: always @* begin
» model a full adder using ys @ beg

@ case ({x, y, Cin})
a a case statement 3'be00: {s, Cout} = 'b0O;
= y y cin ; Cout 3'be01: {s, Cout} = 'ble;
3'b010: {s, Cout} = 'ble;
0 0 0 0 0 3'bo11: {s, Cout} = 'bO1;
0 0 1 1 0 3'b100: {s, Cout} = 'ble;
0 T 0 T 0 3'b101: {s, Cout} = 'bo1l;
0 T T 0 1 3'b110: {s, Cout} = 'bo1l;
1 0 0 1 0 3'b111: {s, Cout} = 'bll;
1 0 1 0 1 endcase Verilog concatenation operator {,}
1 1 0 0 T end allows vectors to be combined
] ] ] ] ] endmodule to produce a wider resulting vector.

CS-173, © EPFL, Spring 2025 40




CS-173, © EPFL, Spring 2025

41



Literature

UNDAMENTALS Ol

DIGITAL LOGIC

with Verilog Design

= Chapter 2: Introduction to Logic Circuits
= 2102

= Appendix A: Verilog Reference
= AT-AT114

CS-173, © EPFL, Spring 2025

Chapter 5: Verilog Hardware
Description Language
= 509

42



