
Digital Logic Circuits
Verilog for Combinational Circuits

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
Intro to CAD and Verilog

2CS-173, © EPFL, Spring 2025

3

Previously

▪ Discovered the key phases of
computer-aided design (CAD) flow
• Hardware description language (HDL)

▪ Learned how to use Verilog HDL for
gate-level modeling of logic circuits

▪ Verilog gates, wires, modules,
ports, and subcircuits

▪ Gate-level modeling examples:
• Full-adder

• Four-bit ripple-carry adder
CS-173, © EPFL, Spring 2025

Let’s Talk About…
…Behavioral modeling in Verilog and
some new gates and combinational circuits

4CS-173, © EPFL, Spring 2025

5

Learning Outcomes

▪ Discover tri-state drivers

▪ Learn about high-impedance Z

▪ Model shared interconnect (a bus) using MUXes or tri-state drivers

▪ Use Verilog behavioral modeling to describe logic circuits
• Understand the difference between continuous assignments and

procedural statements

• Use always blocks and if-else and switch statements

CS-173, © EPFL, Spring 2025

Quick Outline

▪ Tri-state drivers

▪ Bus
• With multiplexers

• With tri-state drivers

▪ Verilog HDL
• Logic gates

• Values: scalar and vector

• Constants, Concatenation

• Parameters, Nets

▪ Behavioral Modeling in Verilog
• Continuous assignments

• assign keyword

• Procedural statements

• always block

• reg type for variables

• if-else statement
• Example: 2-to-1 multiplexer

• case statement
• Example: full-adder

6CS-173, © EPFL, Spring 2025

Tri-State Drivers

7CS-173, © EPFL, Spring 2025

8

Multiple Gates Driving Same Inputs

▪ Example: Two logic gates wanting
to drive an input of a third logic gate

▪ Issue: The logic gates outputs should not be directly connected
• If one gate forces ‘1’ while the other forces ‘0’, a low resistance path

between the power supply and the ground would be created, and the
resulting current would be high. We call that situation a short-circuit

▪ Solution: Insert MUXes or tri-state drivers on the conflicting
signal paths

CS-173, © EPFL, Spring 2025

▪ A tri-state driver has a data input, an output, and an enable input

9

Tri-State Drivers

CS-173, © EPFL, Spring 2025

0 0 Z

0 1 Z

1 0 0

1 1 1

* In electrical engineering, R stands for resistance; resistance is the real part of the impedance.

▪ When the enable input is inactive, the output is electrically
disconnected from the data input; disconnected state is referred
to as high-impedance state and usually denoted as Z (or z)
• Three states of a tri-state driver are logical 0, logical 1, and Z

10

Tri-State Drivers

CS-173, © EPFL, Spring 2025

0 0 Z

0 1 Z

1 0 0

1 1 1

• In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
• https://en.wikipedia.org/wiki/Electrical_impedance

https://en.wikipedia.org/wiki/Electrical_impedance

Types of Tri-State Drivers

▪ Enable active high ▪ Enable active low

11CS-173, © EPFL, Spring 2025

0 0 Z

0 1 Z

1 0 0

1 1 1

0 0 Z

0 1 Z

1 1 0

1 0 1

0 0 0

0 1 1

1 0 Z

1 1 Z

0 0 1

0 1 0

1 0 Z

1 1 Z

E
X

A
M

P
L

E
S

12

Example: Tri-State Drivers

▪ Two gate outputs driving a wire

CS-173, © EPFL, Spring 2025

To avoid short circuits, only
one driver at a time is enabled

Bus
• With MUXes

• With tri-state drivers

13CS-173, © EPFL, Spring 2025

Bus

▪ Digital systems are commonly composed of
several modules exchanging data by means
of a common set of interconnects (wires)

▪ The set of wires grouped under a common
name is referred to as a bus

14CS-173, © EPFL, Spring 2025

Module 1

Module 2

Module K

…

Module
K+1

Module Z…

……

n-bit BUS
(common interconnects)

n wires (n-bit vector)

Bus

▪ Bus receives data from several modules
(one at a time) and brings that data to
the inputs of other modules

▪ Buses are typically -bit wide, where

▪ Example: An -bit bus DATA groups wires,
each carrying one signal
• DATA[0], …, DATA[n-1]

▪ In Verilog, -bit and 1-bit signals are called
vectors and scalars, respectively

15CS-173, © EPFL, Spring 2025

Module 1

Module 2

Module K

…

Module
K+1

Module Z…

……

n-bit BUS
(common interconnects)

n wires (n-bit vector)

Implementing a Bus With MUXes

▪ The multiplexer takes K (K  2)
n-bit data inputs and
an -bit select signal
to select which of the inputs to
pass to the output

▪ An additional circuit that
controls the activation of
the select signals is typically
present

16CS-173, © EPFL, Spring 2025

Module 1

Module 2

Module K

Module
K+1

Module Z

……

0

1

K-1

…

… …

Implementing a Bus With Tri-State Drivers

▪ Only one of the enable
signals is active at a time
so that short circuits
are avoided

▪ An additional circuit that
controls the activation of
the enable signals is
typically present

17CS-173, © EPFL, Spring 2025

Module 1

Module
K+1

Module Z

Module 2

Module K

…

n tri-state drivers, all controlled
by the same enable signal eK

…

… …

CS-173, © EPFL, Spring 2025 18

Verilog, Contd.
• Signal values, numbers, and parameters

19CS-173, © EPFL, Spring 2025

V
E

R
IL

O
G

20

Verilog Built-In Gates
Complete List

▪ Complete list of built-in gates
• bufif is a tri-state buffer

• notif is a tri-state inverter

CS-173, © EPFL, Spring 2025

▪ Tri-state driver usage
• bufif0(f, w, e)

• bufif1(f, w, e)

• notif0(f, w, e)

• notif1(f, w, e)

and xor bufif0

nand xnor bufif1

or buf notif0

nor not notif1

V
E

R
IL

O
G

21

Scalar Signal Values
In Verilog

▪ Verilog supports one-bit signals (scalars)

▪ Each individual signal can have one of the four values:

CS-173, © EPFL, Spring 2025

Value Meaning

0 logic value 0

1 logic value 1

z or Z, tri-state (high-impedance)

x or X, unknown value or don’t care

V
E

R
IL

O
G

22

Vector Signal Values
In Verilog

▪ Verilog supports multi-bit signals (vectors)

▪ The value of a vector variable is specified by giving a constant
of the form

[size][‘radix]constant

where size is the number of bits in the constant

CS-173, © EPFL, Spring 2025

Radix Meaning

d decimal
(default if no radix is specified)

b binary

h hexadecimal

o octal

V
E

R
IL

O
G

23

Constants
In Verilog

▪ Recall: [size][‘radix]constant

▪ If size specifies more bits than
are needed to represent the given
constant, then in most cases,
the constant is padded with zeros
• The exceptions to this rule are when

the first character of the constant is
either x or z, in which case the
padding is done using that value

CS-173, © EPFL, Spring 2025

▪ Examples of constants
Constant Meaning

0 number 0

10 decimal number 10

-8'd10 -10 as an 8-bit two's complement

‘b10 binary number (10)2 = (2)10

‘h10 hex number (10)16 = (16)10

4’b100 binary number (0100)2 = (4)10

4’bx unknown 4-bit value xxxx

8’b1000_0011 _ can be inserted for readability

8’hfx hex number (fx)16,
equivalent to 8’b1111_xxxx

V
E

R
IL

O
G

24

Concatenation Operator
In Verilog

▪ Verilog concatenation operator { , } allows vectors to be
combined to produce a wider resulting vector

▪ Example:

CS-173, © EPFL, Spring 2025

wire [3:0] upper = 4'b1100;
wire [3:0] lower = 4'b0011;
wire [7:0] combined;

assign combined = {upper, lower}; // Result: 8'b11000011

V
E

R
IL

O
G

25

Parameters
In Verilog

▪ Parameters associate an identifier name with a constant

▪ Examples:
• parameter n = 4;

The identifier n can be used in place of the number 4

• parameter S0 = 2’b00, S1 = 2’b01, S2 = 2’b10, S3 = 2’b11;
The name S0 can be substituted for the binary vector (00)2, etc.

▪ We will use them when working with parameterized subcircuits

CS-173, © EPFL, Spring 2025

V
E

R
IL

O
G

26

Nets
In Verilog

▪ Nets represent connections between circuit components
• Do not store values, but transmit signals

▪ Most common net types are wire and tri

▪ The wire type is used to connect an output
of one logic element in a circuit to
an input of another logic element
• Examples: wire x;

wire [3:0] s;

CS-173, © EPFL, Spring 2025

Note: [MSB:LSB] specify
the vector range

MSB (most-significant bit):
the leftmost bit (highest index);

LSB (least-significant bit):
the rightmost bit (lowest index)

27

Nets
In Verilog

▪ Nets represent connections between circuit components
• Do not store values, but transmit signals

▪ Most common net types are wire and tri

▪ The tri type denotes tri-state connections;
tri nets are treated the same way
as the wires; serve to enhance readability
• Examples: tri z1;

tri [7:0] data_out;

CS-173, © EPFL, Spring 2025

Note: [MSB:LSB] specify
the vector range

MSB (most-significant bit):
the leftmost bit (highest index);

LSB (least-significant bit):
the rightmost bit (lowest index)

CS-173, © EPFL, Spring 2025 28

Behavioral Modeling
In Verilog

• Continuous assignments with assign

• Procedural assignments with always@

29CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

Inputs and outputs can be defined
between the parentheses, for readability

30

Recall Gate-Level Modeling

▪ Structural (gate level) modeling

CS-173, © EPFL, Spring 2025

module my_circuit_structural (
input x1, x2, x3, x4,
output f
);

wire w1, w2, w3, w4, w5, w6, w7, w8;

and (w1, x1, x3);
not (w2, x2);
not (w3, x3);
and (w4, x2, x4);
or (w5, x1, w3);
or (w6, w2, x4);
or (w7, w1, w4);
and (w8, w5, w6);
or (f, w7, w8);

endmodule

31

Behavioral Modeling
With Continuous Assignments

▪ Gate-level modeling becomes tedious for large circuits

▪ Alternative: use more abstract expressions and programming
constructs to describe the behavior of a logic circuit

CS-173, © EPFL, Spring 2025

module my_circuit_behavioral (
input x1, x2, x3, x4,
output f
);

wire w7, w8;

assign w7 = (x1 & x3) | (x2 & x4);
assign w8 = (x1 | ~x3) & (~x2 | x4);
assign f = w7 | w8;

endmodule

Verilog operators:
& - bitwise AND

| - bitwise OR
~ - bitwise NOT

Bitwise: applied on
every bit in isolation

32

Continuous Assignments
Assign keyword

▪ The assign keyword provides a continuous assignment for a signal

▪ The term continuous stems from the use of Verilog in
the simulation of logic circuits
• Whenever any signal on the right-hand side of the assignment changes its

value, the signal on the left-hand side will be re-evaluated

• Continuous assignments are executed in parallel:
therefore, the order in which they appear in the code is irrelevant

CS-173, © EPFL, Spring 2025

33

Verilog Assign Statement

▪ General form:

▪ Examples:
• assign f = w7 | w8;

// Whenever w7 or w8 change,
// f will be re-evaluated

• wire [3:1] A, B, C;
assign C = A & B;
// Whenever vectors A or B change,
// C will be reevaluated
// C[1] = A[1] & B[1], C[2] = A[2] & B[2], C[3] = A[3] & B[3]

CS-173, © EPFL, Spring 2025

assign net_assignment {, net_assignment} ;

Note: Braces indicate
that additional entries

are permitted

34

Behavioral Modeling
With Procedural Statements

▪ Verilog allows us to use an even higher level of abstraction with
procedural statements
• Also called sequential statements

• Examples: if-else, case, loops

▪ Procedural statements must be contained inside an always-block
• Evaluated in the order given in the code

▪ To describe circuit behavior, variables are used instead of wires
• For circuit modeling, variables of type reg are used

CS-173, © EPFL, Spring 2025

35

Always Block
Behavioral Modeling with Procedural Statements

▪ General format

▪ When multiple statements are included in the block, the begin
and end keywords are needed; otherwise, they can be omitted*

CS-173, © EPFL, Spring 2025

[*] Not recommended because it is error-prone

always @*
[begin]

[procedural assignments]
[if-else statements]
[case statements]
[while, repeat, and for loops]
[task and function calls]

[end]

Note: The square
brackets indicate an

optional field

(for combinational circuits)

36

Always Block
Behavioral Modeling with Procedural Statements

▪ General format

▪ always @* treats all input signals used in the block as relevant
• If any input signal mentioned in the block changes its value,

all statements using that signal are evaluated in the order presented.
A signal assigned multiple values inside the block retains the last one

CS-173, © EPFL, Spring 2025

(for combinational circuits)

always @*
[begin]

[procedural assignments]
[if-else statements]
[case statements]
[while, repeat, and for loops]
[task and function calls]

[end]

Note: The square
brackets indicate an

optional field

If-Else Statement

▪ If the expression is True,
the statements inside the begin-end
block are evaluated
• When multiple statements are

involved, they have to be included
inside a begin-end block

▪ else if and else clauses are optional
• When included, they are paired with

the most recent unfinished if or else if

▪ General format

37CS-173, © EPFL, Spring 2025

if (expression1)
begin

statement;
end
else if (expression2)
begin

statement;
end
else
begin

statement;
end

E
X

A
M

P
L

E
S

▪ Write a behavioral model of a 2-to-1 MUX
using procedural statements in Verilog

module my_2to1mux (
input w1, w2, s,
output reg f);

always @* begin
if (s == 0) begin
f = w1;

end
else begin
f = w2;

end
end

endmodule

Verilog relational operators op return
1 (True) or 0 (False) based on the result

of the specified comparison A op B:

A == B: equality check operator
A != B: inequality check

A > B, A >= B, A < B, A <= B: comparisons

38

2-to-1 MUX
Always Block and an If-Else Statement

CS-173, © EPFL, Spring 2025

Multiplexer

Note the output is of the type reg,
because this is a behavioral model

(in an always block)

Case Statement

▪ The bits in the expression,
called the controlling expression,
are checked for a match with
each alternative
• Each digit in each alternative is

compared for an exact match
of the four values 0, 1, x, z

• A special case is the default clause,
which takes effect if no other
alternative matches

▪ The first successful match
causes the associated statements
to be evaluated

▪ The form of the case statement

39CS-173, © EPFL, Spring 2025

case (expression)
alternative1: begin

statements;
end

alternative2: begin
statements;

end
[default: begin

statements;
end]

endcase
Note: The square

brackets indicate an
optional field

E
X

A
M

P
L

E
S

40

Full-Adder
Always Block and a Case Statement

▪ case statements can be used
to describe truth tables
• model a full adder using

a case statement

CS-173, © EPFL, Spring 2025

module fulladd (
input x, y, Cin,
output reg s, Cout);

always @* begin
case ({x, y, Cin})
3'b000: {s, Cout} = 'b00;
3'b001: {s, Cout} = 'b10;
3'b010: {s, Cout} = 'b10;
3'b011: {s, Cout} = 'b01;
3'b100: {s, Cout} = 'b10;
3'b101: {s, Cout} = 'b01;
3'b110: {s, Cout} = 'b01;
3'b111: {s, Cout} = 'b11;

endcase
end

endmodule

x y Cin s Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Verilog concatenation operator { ,}
allows vectors to be combined

to produce a wider resulting vector.

CS-173, © EPFL, Spring 2025 41

42

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 2: Introduction to Logic Circuits
▪ 2.10.2

▪ Appendix A: Verilog Reference
▪ A.1 – A.11.4

▪ Chapter 5: Verilog Hardware
Description Language
▪ 5.9

